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Objectives:

Identify key isotopes, reactions, reaction rates important to 
initiating and control of nuclear reactions, including:

1. Key fissionable isotopes

2. Key neutron sources

3. Key neutron absorber materials used for control

4. Key neutron poisons arising from fission product decay
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Fissionable Isotopes
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Isotopes Fissionable by Thermal Neutrons

• Many isotopes are capable of undergoing spontaneous 
fission and energy release

• For controlled chain fission reaction - interest is isotopes 
with: long decay half-life: t1/2, low spontaneous fission 
branching: αf, and high thermal neutron fission rate: σf-th

• Thermal averaged cross section σf-th is computed by 
averaging σf(E) over thermal neutron energy distribution 
φth(E) – essentially a Maxwell-Boltzmann distribution
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U235 Fission

• t1/2 = 7.038 x 108 yrs
• Spontaneous fission 

rate: αsf = 7.0 x 10-9

• σf-th = 577 barns
• U235 yields ~2.43 

neutrons/fission
• U235 naturally occurring
• Relative abundance 

0.72%
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U238 Fission
• t1/2 = 4.468 x 109 yrs
• Spontaneous fission 

rate: αsf = 5.5 x 10-5

• σf-th ~ 10-5 barns
• Fast neutron fission 

rate is higher
• Overall U238 fission 

rate is small 
compared to U235

• σf-f ~ 0.5 barns
• U238 naturally 

occurring
• Relative abundance 

99.2745%
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U233 Fission

• t1/2 = 1.592 x 105 yrs
• Spontaneous fission 

rate: αsf < 6.0 x 10-11

• σf-th = 527 barns
• U233 yields ~2.48 

neutrons/fission
• U233 is artificial isotope 

from Th232 neutron 
capture.
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U233 Origins
• U233 is produced via following conversion chain from 

Th232:

• Recent interest in U233 fission is due to non-proliferation, 
waste management considerations

• Thorium ore is 3x more plentiful than Uranium

• Large deposits exist in India, Canada, Norway
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Pu239 Fission

• t1/2 = 2.411 x 104 yrs
• Spontaneous fission 

rate: αsf = 3.0 x 10-10

• <σf>th = 742 barns
• Pu239 yields ~2.87 

neutrons/fission
• Pu239 is produced via 

U238 neutron capture
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Pu239 Origins
• Pu239 is produced via following conversion chain from U238:

• Pu239 is produced in any light water reactor using lightly 
enriched U235 Uranium

• Fission of Pu239 contributes significantly to power 
production at end of reactor fuel cycle as U235 is consumed
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Pu241 Fission

• t1/2 = 14.35 yrs
• Very strong β-decay 

source
• Spontaneous fission 

rate: αsf = 2.4 x 10-14

• σf-th = 1025 barns
• Pu241 primarily 

produced via 
neutron capture
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Three isotopes with desired properties:

• U235

• U233

• Pu239

• All others found to: decay too quickly, have 
large spontaneous fission branching ratios, or 
too low a thermal neutron cross section.
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Neutron Sources
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Neutrons can be generated by:
• (α,n) reaction from Radium α-particles hitting Beryllium and 

generating neutrons via: Be9(α,n)C12     (Chadwick - 1932) 

• Spontaneous fission neutrons –reliance on random U235

fission neutrons for chain reaction initiation is not desirable

• Cf252 spontaneous fission neutrons (1µg Cf252= 2.8·106 n/sec)

• Steady neutron source needed to initiate controlled chain 
fission reaction in fresh Uranium or Plutonium based fuel

• Radioactive sources via α-decay bombardment:  Ra-Be, Ra-B, 
Ra-F, Po-Be, Pu-Be)

• Photo-neutron reactions: Be9(γ,n)Be8 with Eγ >1.6MeV, 
H2(γ,n)H1 with Eγ >2.23MeV

• Fusion reactions: H2 (H2,n)H3 (pulsed portable n-generators)
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Portable Neutron Generators

• Essentially miniature 
accelerator for producing 
fusion neutrons

• Used in laboratory and field 
survey applications

• 1.5·108 neutrons/sec at 
14MeV

• 20 -250 kHz pulse rate

• Weight: ~ 25lbs

• Not used for reactor startup
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Possible (α,n) Sources for Reactor Startup

• 1 Cu Ra226-Be9 source capable of 1.0-1.5 x 106 neutrons/sec
• Disadvantage: Ra226-Be9 source has large γ source from Ra decay 

products.
• 1 Cu Po210-Be9 source capable of ~ 2.8 x 106 neutrons/sec without 

excessive γ production.
• Disadvantage: Po210 scarcity.
• Pu239-Be9 source produces ~5 MeV neutrons in quantities of: 57.2 

neutrons/106 α absorbed, without excess γ production 
• Disadvantage: Pu239 is fissionable, has large σf-th.
• Am241-Be9 source produces ~5 MeV neutrons in quantities of: 71.5 

neutrons/106 α absorbed but has small σf-th

• Pu239-Be9 and Am241-Be9 sources (>106 neutrons/sec) used for initial reactor 
startup with fresh fuel

• Source is placed in spare instrument slot in first fuel bundle inserted to 
reactor
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Neutron Source for Initial Startup
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Neutron Absorbers
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Neutron Absorbers Are Used to Control 
Nuclear Chain Reaction

• Key requirements for neutron absorber materials:

• Large neutron capture cross section σc-th for either (n,γ)
or (n,α) type reactions

• Materials suitability for withstanding long term radiation 
exposure/damage and heat transfer
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B10(n,α)Li7 Reaction
• σc-th = 3813 barns
• Typical material is 

Boron Carbide (B4C)
• B4C Melting point is: 

2350°C (4262°F)
• Li7 is non-radioactive
• Natural Boron is 19.9% 

B10, 80.1% B11

• B11 very weak absorber 
σc-th < 0.05 barns

• Natural Boron (B10, B11)
σc-th = 755 barns

• Boric Acid and Sodium 
Pentaborate solutions
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Hfx(n,γ)Hfx+1 Reactions

• σc-th = 105 barns
• Elemental Halfnium is:

• 35.100%       Hf180

• 27.297%       Hf178

• 18.606%       Hf177

• 13.629%       Hf179

• 5.206%       Hf176

• 0.162%       Hf174

• Halfnium melting point is: 
2233°C (4051°F)

• Commonly used in Naval 
Reactors
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Cadmium (n,γ) Reactions
• σc-th = 2450 barns
• Elemental Cadmium is:

• 28.73%   Cd114

• 24.13%   Cd112

• 12.80%   Cd111

• 12.49%   Cd110

• 12.22%   Cd113

• 7.49%   Cd116

• 1.25%   Cd106

• 0.89%   Cd108

• Melting Point is 321°C 
(609.9°F)

• Cadmium was used in first 
reactor (CP-1)
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Silver (n,γ) Reactions

• Elemental Silver is:
• 51.839% Ag107

• 48.161% Ag109

• Natural Silver (Ag107, Ag109)
σc-th = 63 barns

• Capture in resonance 
region is very large

• Melting Point is 961°C 
(1763°F)
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Indium (n,γ) Reactions

• Elemental Indium is:
• 95.7% In115

• 4.3% In113

• σc-th = 191 barns
• Capture in resonance 

region is very large
• Melting Point is 

156.6°C (313.88°F)
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Silver-Indium-Cadmium Alloy

• Due to earlier unavailability of metallic Halfnium, an alloy of 
Silver-Indium-Cadmium was proposed as Civilian alternative

• Alloy mixture: 80% Silver, 15% Indium, 5% Cadmium

• σc-th = 0.8 σc-thAg + 0.15 σc-thIn + 0.05 σc-thCd

= 0.8(63 barns)+ 0.15(191 barns) + 0.05(2450 barns)
= 201.55 barns

• Alloy mixture has similar nuclear absorption in thermal and 
resonance regions, but still has relatively low melting point
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Fission Product Neutron Poisons
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Certain Fission Products are Neutron Absorbers
• Majority of fission products 

have low neutron capture 
cross sections

• Two major exceptions:

• Xe135   σc-th = 2.7x106 barns

• Sm149 σc-th = 5.85x104 barns
• Because capture cross 

sections are large:
• Need to understand: 
• Build-up, burn-up, decay 

physics of these fission 
products
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Xe135 Poisoning

• Xe135 is direct U235 fission product  (yield: γXe = 0.003)

• Xe135 also produced via Te135 decay which is a fission product 
of U235 (yield: γTe = 0.061)

• Decay scheme is as follows:

γTe · Fission Rate→ Te135 → β- + I135 t1/2 ~ 0.5 min
I135    → β- + Xe135 t1/2 = 6.7 hours

γXe · Fission Rate → Xe135 →β- + Cs135 t1/2 = 9.2 hours
Cs135 → β- + Ba135 t1/2 = 2.6x106 years

• Thus: system of build-up caused by fission rate, decay, and 
possibly burn-up of Xe135 via neutron capture exists
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Xe135 Poisoning in U235

• Fission rate:      φthΣf-th

• Direct production of I135 via fission:    γTe φthΣf-th

• Elimination of I135 via neutron capture:     negligible
• Elimination of I135 via decay: -λI I(t)  (I(t) is I135 concentration)
• Direct production of Xe135 via fission:  γXeφthΣf-th

• Production of Xe135 via decay of I135:  λI I(t)
• Elimination of Xe135 via decay: -λXe Xe(t)    (Xe(t) is Xe135 conc.)
• Elimination of Xe135 via neutron capture is: -φthσc-th Xe(t)
• This yields following linear system of equations:

dI/dt = γTe φthΣf-th –λI  I(t)

dXe/dt = γXeφthΣf-th + λI  I(t) -φthσc-th X(t) –λXe Xe(t)



31

Xe135 Poisoning in U235

• Under equilibrium conditions (constant φth):
dI/dt = 0 = γTe φthΣf-th –λI  I(∞) thus:   I(∞) = γTe φthΣf-th / λI

dXe/dt = 0 = γXeφthΣf-th + λI  I(t) –φthσc-th Xe(∞) –λXe Xe(∞)

• Thus: Xe(∞) = [γXeφthΣf-th + λI  I(∞)] / [φthσc-th +λXe ]
= φthΣf-th [γXe + γTe ] / [φthσc-th +λXe ]

• If flux is constant, equilibrium Xe135 concentration reached 
• When: λXe<< φthσc-th - or: φth >> λXe / σc-th

• This is true when: φth >> (0.693/t1/2) / σc-th

φth >>(0.693/ (6.7hrs ·3600sec/hr)) / (2.6 ·106 barns · 10-24cm2/barn)
φth >> 1.1 ·1013 neutrons /sec. cm2

•• Commercial power reactors operate exactly in this range!Commercial power reactors operate exactly in this range!
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Xe135 Poisoning in U235

• Exact steady state buildup of Xe can be predicted from 
physics parameters independent of neutron flux levelindependent of neutron flux level

• Xe(∞) = Σf-th [γXe + γTe ] / σc-th

• Using numbers: Σf-th = 48.7 cm-1,    γXe = 0.003,  γTe = 0.061,

σc-th = 2.7x106 barns x 10-24cm2/barn = 2.6 x10-18cm2

• Then:       Xe(∞) = 1.1 x 1018 atoms/cm3

• What happens if after large flux level achieved, it suddenly 
disappears?
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Xe135 Poisoning in U235

• Thermal flux: φth ≈ 1014/cm2 sec
• I(∞) = 1x1019 atoms/cm3

Xe(∞) = 1.1x1018 atoms/cm3

• Thermal flux drops to: 0/cm2 sec
• I135 production ceases and begins 

to decay away
• Xe135 production from fission 

ceases but production from I135

decay continues
• Removal of Xe135 by neutron 

capture ceases, but decay 
continues

• Xe135 reaches peak concentration 
of 4.4x1018 atoms/cm3 at ~11.6 hrs

•• XeXe135135 competescompetes with fissionwith fission
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Sm149 Poisoning
• Sm149 is stable isotope produced via decay from Pm149, which 

is from fission product: Nd149 (U235 yield: γNd =0.011)

• Decay scheme is as follows:
γNd x Fission → Nd149 → β- + Pm149 t1/2 = 2.0 hours

Pm149 → β- + Sm149 t1/2 = 54 hours

• Sm149 with σc-th = 5.85x104 barns, can only be removed by 
burning it up with thermal neutrons

• System of equations governing Sm149 build-up/decay is:

dPm/dt = γNdφthΣf-th –λPm Pm(t)

dSm/dt = λPmPm(t) – φthσc-th Sm(t) 



35

Sm149 Poisoning in U235

• Under equilibrium conditions (constant φth):
dPm/dt = 0 = γNdφthΣf-th –λPm Pm(∞)

• Thus:  Pm(∞) = γNdφthΣf-th / λPm

dSm/dt = 0 = λPmP(∞) – φthσc-th Sm(∞)

• Thus: Sm(∞) = λPmPm(∞) / φthσc-th

• Substituting in for P(∞) yields:
Sm(∞) = γNdΣf-th / σc-th

• Using: γNd =0.011, Σf-th = 48.7cm-1, 
σc-th = 5.85x104barns · 10-24cm2/barn = 5.85 x10-20cm2

• Sm(∞) = 9.4 · 1018 atoms/cm3
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Sm149 Poisoning in U235

• Thermal flux: φth = 1014/cm2 sec
• Pm(∞) = 5.5x1019 atoms/cm3

Sm(∞) = 9.4x1018 atoms/cm3

• Thermal flux drops to: 0/cm2 

sec
• Pm149 production ceases and 

begins to decay away
• Removal of Sm149 by neutron 

capture ceases, but production 
from Pm149 decay continues

• Sm149 eventually reaches value 
of ~2.48x1019 atoms/cm3

•• SmSm149 149 capture exceeds fissioncapture exceeds fission
at ~ 75hoursat ~ 75hours
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Reactor Design for Xe135, Sm149

• Obviously nuclear fuel design must consider:
• All isotopes which capture neutrons: Xe135, Sm149, B10, etc…
• All isotopes present in fuel that fission: U235, Pu239, Pu241, etc…

• During extended power operation equilibrium Xe135, Sm149 

capture becomes comparable to Σf-th

• Fuel design compensates by adjusting Uranium 
enrichment to increase Σf-th to cope with equilibrium levelsequilibrium levels

• Fuel design does notdoes not provide ability to override peak Xe135

condition (at 11.6 hours)

• If reactor trips and cannot immediately be restarted it will 
require waiting 18 - 24 hrs for Xe135 to decay 
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Summary
• Good fission fuels have:

– Long T1/2, 
– Isotope Availability, 
– High σf

• Isotopes meeting these requirements include:
–– UU235235

–– UU233233

–– PuPu239239

• Good startup neutron sources:
– Appreciable neutron production rates
– Isotope Availability
– Preferably not major γ-radiation source

• Neutron sources meeting these requirements include:
–– PuPu239239--BeBe99

–– AmAm241241--BeBe99
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Summary
• Good absorbers for chain reaction control should have: 

– large neutron capture cross section, 
– high melting point, 
– material availability.

• Some good absorbers include: 
–– BB1010 Boron Carbide 
– Liquids BB1010 forms: Boric AcidBoric Acid, Sodium Sodium PentaboratePentaborate
–– HalfniumHalfnium
–– SilverSilver--IndiumIndium--Cadmium AlloyCadmium Alloy

• Most fission products are not major neutron absorbers.
• Fission products that are major neutron absorbers and 

impact operation:
–– XeXe135135

–– SmSm149149


